Fabrication of mesoscale topographical gradients in bulk titanium and their use in injection moulding
نویسندگان
چکیده
Article history: Received 17 March 2016 Received in revised form 11 July 2016 Accepted 13 July 2016 Available online 15 July 2016 Fabrication methods for titanium substrates exhibiting continuous micro and nano scale arrays, with increasing feature heights over the length of the array are reported. The resultant feature heights spanned0–2 μm.Patterned gradient arrays of circular featureswith diameters of: 500 nm, 1 μmand 2 μm, spaced by twice the diameterwere manufactured by the process using specially prepared titanium substrates. Patterns were exposed by electron beam lithography and the length of the patterned arrays was 15mmor 20mm. This work presents two selectivity amplification processes to achieve a gradient of feature heights ranging over the titanium array after consecutive reactive ion etching processes. The first, route A: a HSQ on Ti, gradient amplification process. The second, route B, a SiO2 layer amplification transfer into Ti. The crucial initial gradient component deposited for the amplification process for both routes was a diffusion limited plasma polymerised hexane gradient. Etching using respective reactive ion etch chemistries for each gradient transfer through the various selectivity amplification layers (employing consecutive etch steps, in thisway) enables a dual amplification for each route tomanufacture. The original gradient is transferred into titanium as a function of the sum of the respective selectivities between the materials, using the appropriate dry etch plasma conditions. The substrates henceforth are referred to as inlays, and were tested for use as a high throughput platform for polymer replication by injection moulding. It is envisaged that the fabricationmethodology and resultant topographies have use in a range of engineering applications. The overall selectivity to Ti for polymerised hexane is increased by more than 20 times using each dual amplification process. © 2016 Published by Elsevier B.V.
منابع مشابه
Biocompatibility of Advanced Manufactured Titanium Implants—A Review
Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys i...
متن کاملIN-SITU FABRICATION PROCESS OF AL- TIC COMPOSITE BY SLAG
The new in situ method for AI-TiC composite fabrication has been carried out. In this method, fabrication of AI-TiC composite by simultaneous introduction of titanium oxide and carbon into aluminum melt was investigated.. Under the process conditions, titanium and carbon reaction results in titanium carbide whiskers. The salt containing keriolite (Na3AIF6), titanium oxide (TiO2) and graphite us...
متن کاملFabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process
Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...
متن کاملAnalysis of the Mesoscale Convective Systems Characteristics in West of Iran Case Study: April 23, 2004
In Iran the issue of occurring natural disasters, particularly mesoscale convective systems. They are important on one hand, because of their increasing intimidations and causing damages and on the other hand, because of their increasing abundance, time of duration, and happening. Therefore life cycle, constituton condition and mesoscale convective systems features in west of Iran using satelli...
متن کاملPseudomorphic Reaction: A New Approach to Produce Bulk Mesoporous Silica as Catalyst Support in Methane Reforming
Pseudomorphism is known as a suitable technique for producing mesoscale pore in silica powders keeping their original morphologies. Herein, silica discs with several millimeter dimensions have been prepared using the same method. This method has been utilized through application of pseudomorphism reaction of preshaped bodies by immersion in a solution containing surfactant and swelling re...
متن کامل